MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 1

Devoir en temps limité n°4 - 3h

Le code doit étre commenté des qu’il dépasse les 5 lignes ou comprend un concept compliqué. Il est possible (et
recommandé) d’utiliser des fonctions auxiliaires en Ocaml, en expliquant leur role.

Pour maximiser la compréhensibilité des exercices, le sujet est séparé en trois parties. D’abord les questions de
cours, puis les exercices a faire en C, puis les exercices a faire en Ocaml. Les exercices ne sont pas rangés par
ordre de difficulté et sont indépendants.

1 Questions de cours

Qu’est-ce que la barriere d’abstraction ?
Quelles sont les primitives de la structure de données liste ?
Qu’est-ce qu'un maillon dans une structure simplement chainée ?

L e

Enoncer une implémentation possible d’une file et rappeler brievement sont fonctionnement, en utilisant un
ou des dessins.

5. Dessiner le graphe de flot de contrdle du programme suivant et donner un jeu de tests permettant de couvrir
tous les arcs.
Remarque : on suppose que n est la longueur du tableau t. m est un entier quelconque.
int f (intx t, int n, int m){
if (m >= n){
int a = t[0];
int i=1;
while(i<n){
a+=t[i];
i+=1;
}
return a;}
else { if(n>=1){return 0;}
else {return 2;}}}

Quelle erreur peut on manquer, méme avec un jeu de test qui couvre tous les arcs?

2 Exercices en C

Exercice 1 Implémentation d’une file circulaire en C
Dans cet exercice on propose d'implémenter un file d’entiers a partir d’'une structure chainée circulaire.

L'idée est la suivante : la file est une chaine de maillons, les éléments sont enfilés a droite (apres le dernier élément)
et défilés a gauche (le premier élément est le premier défilé).

Pour avoir acces a tout moment au premier et au dernier maillon, le dernier élément pointe vers le premier élément
et on dispose d’un pointeur vers le dernier élément.

dernier

y

1o+ 2 [of——{3[ot——/a]3]
1]

Un exemple de file f1

dernier dernier

y Y

2[o+——[3[o+——[alo] (1] of——{2 [o——{3] o4 | o—{6 9]

Apres défilement de f3 Apres enfilement de 6 dans f;

On propose les types suivants :

typedef struct maillon {int valeur; maillonx suivant;} maillon;
typedef struct file {maillonx dernier;} file;

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 2

1. Comment représenter la file vide avec cette implémentation? Ecrire la fonction filex creer() qui crée et
renvoie un pointeur vers une file vide.

2. Ecrire la fonction bool est_vide(filex f) qui vérifie si la file est vide.

3. Faire un dessin de la file quand elle ne contient quun seul élément x. KEcrire une fonction
maillon* cree_maillon(int x) qui crée un maillon de valeur x qui pointe vers lui-méme.

Pour vous aider on propose la fonction int defile(filex f) suivante :
int defile(filex f){
maillon*x premier = f->dernier->suivant;
int v = premier->valeur;
if(premier->suivant == premier){
f->dernier = NULL;
}
else{
f->dernier->suivant = premier->suivant;
}
free(premier);
return v;

}

4. Qu’a t-on oublié de vérifier dans la fonction defile proposée ? Proposer des commentaires pour la fonction.
5. Ecrire la fonction int coupdoeil(filex f) qui regarde le prochain élément sans le défiler.

6. Ecrire la fonction void enfile(filex f, int x). On fera attention au cas o la file est vide. On rappelle qu’on
enfile a droite, donc I’élément enfilé devient le dernier élément.

7. Ecrire la fonction void detruire(filex f) qui libére toute la mémoire affectée a la file.
8. Donner la complexité de chacune des fonctions précédentes.

Exercice 2 Les palindromes

Dans cet exercice on suppose une structure de pile mutable de caractéeres déja implémentée en C. Les
primitives pilex creer(), bool est_vide(pilex p), void empiler(pilex p, char c), char depiler(pilex p),
char coupdoeil(pilex p) et void detruire(pilex p) sont définies et utilisables. On ne suppose pas une
implémentation particulere de la pile.

On rappelle qu'un palindrome est une chaine de caractere qui se lit de la méme maniere de droite a gauche ou de
gauche a droite, comme "kayak".
Mathématiquement parlant, une chaine s = cgcy...c,—1 est un palindrome si pour touti € [|0,n — 1{], ¢; = ¢p—1-i-

L’algorithme suivant permet de déterminer si une chaine de caracteres s est un palindrome en utilisant une pile :

i) Créer une pile vide
ii) Empiler les lettres du mot une a une jusqu’a atteindre le milieu du mot.
ii1) Sile mot est de taille impaire, on ignore le caractere central.

iv) Pour chaque lettre ¢ aprés le milieu, dépiler un élément ¢’ la pile et comparer avec c. Conclure s’il faut
continuer ou pas.

v) Renvoyer vrai si la chaine était un palindrome et faux sinon.

1. A l’étape iv), que peut on dire sic #¢’? Sic=¢’?
2. On rappelle qu'en C les chaines de caractéres du type charx se terminent par le caractére '\0’. Rappeler
comment écrire une fonction int strlen(char* s) qui calcule la taille de la chaine s.

3. Programmer la fonction bool est_palindrome(charx s) qui suit le principe expliqué précedemment.
On va maintenant procéder a la preuve de ce programme.
4. Justifier que votre fonction termine.

Pour la correction, on note n la taille de la chaine de caractere en entrée. L’algorithme présenté contient clairement
deux boucles indépendantes, une pour 1’étape ii) et une pour I’étape iv). (et jespére que votre programme est bien
structuré de cette maniere.)

Un invariant pour la premiére boucle est "A la fin de ’étape i, la pile contient toutes les lettres de i a 0, dans
Pordre.". La preuve est évidente, on pourra donc supposer qu’'au début de 1’étape iii) la pile contient toutes les

lettres de I_gj —14a0, dans l'ordre.

5. Proposer un (ou des) invariant(s) utile(s) pour la deuxiéme boucle. Conclure quant a la correction totale de la
fonction.

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 3

3 Exercices en Ocaml

Exercice 3 Le tri a bulles
Le tri a bulles est un algorithme de tri qui permet de trier un tableau ¢ dans l'ordre croissant. Son principe est le
suivant :

i) On parcourt le tableau de gauche a droite, en comparant chaque élément ¢.() & son voisin de droite
t.(1 + 1) : ¢’ils ne sont pas dans le bon sens, on les échange.

i1) A la fin du parcours :
m si durant le parcours on a fait au moins un échange, on retourne a I’étape 1),
® sinon, le tableau est trié.

Un exemple du fonctionnement est donné apres les questions pour ne pas les noyer, n’hésitez pas a le regarder.

1. Ecrire une fonction parcours : 'a array -> bool qui prend en entrée un tableau ¢ et fait un parcours du
tableau en faisant les échanges nécessaires. La fonction renvoie un booléen indiquant si un échange a été fait
lors du parcours.

2. Ecrire une fonction tri_bulles : 'a array -> unit qui trie un tableau avec la méthode décrite.

3. Montrer qu'un parcours n’effectue aucun échange si et seulement si ¢ est trié.
Lemme (admis) : On note ag < a7 < ... < a,-1 les éléments d’'un tableau ¢, ici numérotés selon leur valeur, pas
selon leur position dans le tableau, qui peut étre quelconque.

Si le sous tableau de ¢ entre les indices & € [|0,n — 1|] et n — 1 est exactement [|az; ar41;...;an-1]], alors aprés un
itération de parcours sur ¢, le sous tableau de ¢ entre les indices £—1 et n—1 est exactement [|ar_1; ap; ap+1;...;an-1l].

En particulier si le maximum a,_; du tableau n’est pas initialement en derniere position, alors le parcours met
a,_1 dans la casen — 1.

4. (question difficile) Montrer la correction totale de votre algorithme.
Indication : un invariant utile est qu’a la fin de chaque parcours un certain sous tableau ¢’ de ¢ est trié et que
les éléments de ¢’ sont les plus grands éléments de ¢.
Exemple pour t=[|3;5;12;1;0|] :

Durant le premier parcours : on compare 3 et 5, qui sont dans le bon sens, on compare 5 et 12, qui sont dans le bon
sens, on compare 12 et 1, qui ne sont pas dans le bon sens. On obtient t=[|3;5;1;12;0]|] puis on compare 12 et 0,
qui ne sont pas dans le bon sens. On obtient t=[|3;5;1;0;12]|]. Fin du parcours, on recommence au début.

Durant le deuxiéme parcours (on ne cite plus les paires qu'on échange pas) : on échange 5 et 1 puis 5 et 0. On obtient
t=[|3;1;0;5;12]|] ala fin du parcours.

Durant le troisiéme parcours : on échange 3 et 1 puis 3 et 0. On obtient t=[|1;0;3;5;12|] a la fin du parcours.
Durant le quatriéme parcours, on échange 1 et 0. On obtient t=[]0;1;3;5;12|] a la fin du parcours.

Durant le cinquiéme parcours, on effectue aucun échange. L’algorithme prend fin.

Dans le reste de cette partie on utilisera le module Stack (comme une pile en anglais) pré-implémenté de
Ocaml : Les primitives ont les noms suivants, le type "a Stack.t désignant une pile d’éléments de type 'a:

m Stack.create : unit -> 'a Stack.t qui crée une pile vide

m Stack.is_empty : 'a Stack.t -> bool qui vérifie si une pile est vide

m Stack.push : 'a -> 'a Stack.t -> unit qui ajoute un élément (equivalent de empile)

m Stack.pop : 'a Stack.t -> 'a qui retire et renvoie 'élément le plus récent (équivalent de depile)

m Stack.peek : 'a Stack.t -> 'aquirenvoie sans retirer 'élément le plus récent (équivalent de coup-
doeil)

Les fonctions peek et pop lévent I'exception Empty si la pile est vide.
On suppose que les fonctions create, is_empty,push, pop et peek s’effectuent en temps constant.
Vous avez le droit d’utiliser des piles auxiliaires.

Exercice 4 Trier les copies
Une professeure de maths a donné deux sujets a ses éleves de MPI : un sujet Mines-Ponts et un sujet CCINP.

Elle a arrangé ses copies dans 'ordre alphabétique, mais avant de commencer a corriger, elle préfere réarranger
sa pile de copies pour que les copies du sujet Mines-Ponts soient sur le dessus et les copies CCINP en-dessous mais
que les copies Mines-Ponts soient toujours triées dans 'ordre alphabétique, tout comme les copies CCINP.

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 4

On modélise les copies par des objets du type énumération type sujet = CCINP of string | MP of string;;. Par
exemple la copie de Louis, qui a fait le sujet CCINP peut étre définie par let copie = CCINP "Louis";;.

Ecrire une fonction arrange : sujet Stack.t -> unit qui prend en entrée la pile de copies et les réarrange. Par
exemple si la pile contient initialement MP "Anna", CCINP "Beatrice", CCINP "Louis", MP "Xavier" alors ala
fin elle doit contenir MP "Anna", MP "Xavier", CCINP "Beatrice", CCINP "Louis".

Remarque : il n’est pas nécessaire de vérifier que la pile est initialement bien dans 'ordre alphabétique.

Exercice 5 Trier une pile
Trier une pile, c’est modifier la pile pour que les éléments les plus grands soient les plus proches de la sortie.

On va suivre un principe similaire au tri par insertion : on sort tous les éléments de la pile, puis on les remet tous,
en les insérant chacun a sa place.

Il est autorisé d’utiliser des piles auxilaires, mais pas des listes ou des tableaux.

1. Ecrire une fonction insere : 'a -> 'a Stack.t -> unit qui prend en entrée un élément x et une pile p triée
et insere I’élément x dans p de sorte a ce qu’elle reste triée. La pile doit contenir a la fin les éléments qu’elle
contenait déja, avec en plus x.

2. En déduire une fonction tri_pile : 'a Stack.t -> unit qui trie la pile.

3. Quelle est la complexité du tri? Préciser le pire cas et le meilleur cas.

Exercice 6 Le tri de crépes

Dans cet exercice on a préparé une pile de crépes de diametres différents. On souhaite trier la pile pour que la plus
petite crépe soit sur le dessus et la plus grande en dessous. Une crépe sera représentée par un entier : son diametre,
donc une pile de crépes est représentée par une pile d’entiers.

Par exemple la pile de gauche doit devenir la pile de droite :

. o
= 4 g — ==
e E—— —_ : D

On dispose uniquement d’une spatule que 'on peut insérer dans le pile de crépes de facon a retourner I'ensemble
des crépes qui sont au-dessus de la spatule.

Par exemple le retournement suivant :

= ——>> —
R ———"

1. Avant de commencer le tri il nous faut une fonction qui effectue le travail de la spatule. Ecrire une fonction
retourne : int Stack.t -> int -> unit qui prend en entrée un pile p et un entier i et retourne les i premiéres
crépes.

Par exemple sion a du haut vers le bas des crépes de diameétres 1,6,2,12,3 et i = 3, la pile doit devenir 2,6,1,12,3.
Le principe du tri est le suivant. On remarque qu’on ne crée pas d’autre pile (ni tableau, ni liste) :

e on recherche la plus grande crépe;
e on retourne la pile a partir de cette crépe de facon a mettre cette plus grande crépe tout en haut de la pile;
e on retourne 'ensemble de la pile de facon a ce que cette plus grande crépe se retrouve tout en bas;

e la plus grande crépe étant a sa place, on recommence le principe avec le reste de la pile.
On suppose écrite une fonction taille_pile : int Stack.t -> int qui calcule la taille de la pile.

2. Ecrire une fonction indice_plus_grande_crepe : int Stack.t -> int -> int qui prend en entrée la pile et un
indice i, cherche et renvoie quelle crepe est la plus grande parmi les { premiéres (i inclus). La crepe sur le
dessus est numérotée 0, celle juste en dessous est numérotée 1, etc... Cette question peut utiliser une pile
auxiliaire.

3. Ecrire une fonction tri_crepes : int Stack.t -> unit qui trie la pile de crépes en suivant le principe dé-
crit.

MP2I - Lycée Carnot - 2024/2025 Informatique - DS4 5

4. Quelle est la complexité du tri? Préciser le pire cas et le meilleur cas.

5. Faire la preuve de correction totale de 'algorithme de tri de crépes. On pourra supposer que la fonction
retourne est correcte.

	Questions de cours
	Exercices en C
	Exercices en Ocaml

